

Art of Problem Solving 2011 Balkan MO

Balkan MO 2011

1	Let $ABCD$ be a cyclic quadrilateral which is not a trapezoid and whose diagonals meet at E . The midpoints of AB and CD are F and G respectively, and ℓ is the line through G parallel to AB . The feet of the perpendiculars from E onto the lines ℓ and CD are H and K , respectively. Prove that the lines EF and HK are perpendicular.
2	Given real numbers x, y, z such that $x + y + z = 0$, show that $\frac{x(x+2)}{2x^2+1} + \frac{y(y+2)}{2y^2+1} + \frac{z(z+2)}{2z^2+1} \ge 0$
	When does equality hold?
3	Let S be a finite set of positive integers which has the following property: if x is a member of S, then so are all positive divisors of x. A non-empty subset T of S is good if whenever $x, y \in T$ and $x < y$, the ratio y/x is a power of a prime number. A non-empty subset T of S is bad if whenever $x, y \in T$ and $x < y$, the ratio y/x is not a power of a prime number. A set of an element is considered both good and bad. Let k be the largest possible size of a good subset of S. Prove that k is also the smallest number of pairwise-disjoint bad subsets whose union is S.
4	Let $ABCDEF$ be a convex hexagon of area 1, whose opposite sides are parallel. The lines AB , CD and EF meet in pairs to determine the vertices of a triangle. Similarly, the lines BC , DE and FA meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least $3/2$.