

Art of Problem Solving 2010 Balkan MO

Balkan MO 2010

1	Let a, b and c be positive real numbers. Prove that
	$\frac{a^2b(b-c)}{a+b} + \frac{b^2c(c-a)}{b+c} + \frac{c^2a(a-b)}{c+a} \ge 0.$
2	Let ABC be an acute triangle with orthocentre H , and let M be the midpoint of AC . The point C_1 on AB is such that CC_1 is an altitude of the triangle ABC . Let H_1 be the reflection of H in AB . The orthogonal projections of C_1 onto the lines AH_1 , AC and BC are P , Q and R , respectively. Let M_1 be the point such that the circumcentre of triangle PQR is the midpoint of the segment MM_1 . Prove that M_1 lies on the segment BH_1 .
3	A strip of width w is the set of all points which lie on, or between, two parallel lines distance w apart. Let S be a set of n $(n \ge 3)$ points on the plane such that any three different points of S can be covered by a strip of width 1. Prove that S can be covered by a strip of width 2.
4	For each integer $n \ (n \ge 2)$, let $f(n)$ denote the sum of all positive integers that are at most n and not relatively prime to n . Prove that $f(n+p) \ne f(n)$ for each such n and every prime p .