

Art of Problem Solving 2012 Bosnia Herzegovina Team Selection Test

Bosnia Herzegovina Team Selection Test2012

Day 1

1	Let <i>D</i> be the midpoint of the arc $B - A - C$ of the circumcircle of $\triangle ABC(AB < AC)$. Let <i>E</i> be the foot of perpendicular from <i>D</i> to <i>AC</i> . Prove that $ CE = \frac{ BA + AC }{2}$.
2	Prove for all positive real numbers a, b, c , such that $a^2 + b^2 + c^2 = 1$:
	$\frac{a^3}{b^2 + c} + \frac{b^3}{c^2 + a} + \frac{c^3}{a^2 + b} \ge \frac{\sqrt{3}}{1 + \sqrt{3}}.$
3	Prove that for all odd prime numbers p there exist a natural number $m < p$ and integers x_1, x_2, x_3 such that:
	$mp = x_1^2 + x_2^2 + x_3^2.$
Day 2	
4	Define a function $f : \mathbb{N} \to \mathbb{N}$,
	f(1) = p + 1,
	$f(n+1) = f(1) \cdot f(2) \cdots f(n) + p,$
	where p is a prime number. Find all p such that there exists a natural number k such that $f(k)$ is a perfect square.
5	Given is a triangle $\triangle ABC$ and points M and K on lines AB and CB such that $AM = AC = CK$. Prove that the length of the radius of the circumcircle of triangle $\triangle BKM$ is equal to the length OI , where O and I are centers of the circumcircle and the incircle of $\triangle ABC$, respectively. Also prove that $OI \perp MK$.
6	A unit square is divided into polygons, so that all sides of a polygon are parallel to sides of the given square. If the total length of the segments inside the square (without the square) is $2n$ (where n is a positive real number), prove that there exists a polygon whose area is greater than $\frac{1}{(n+1)^2}$.

www.artofproblemsolving.com/community/c3664 Contributors: teps